FHWA-NDE CENTER

Methods Available for Testing & Evaluation of Structures

FHWA NDE Center Current Projects

- Ultrasonic NDE
- Ground Penetrating Radar, PERES II
- Thermal NDE
- Laser System Measurements
- Load Testing
- Bridge Data Acquisition Systems LTBP

UHPC - Basic Material Properties

Material	Amount (kg/m ³)	Percent by Weight
Portland Cement	712	28.7
Fine Sand	1020	41.1
Silica Fume	231	9.3
Ground Quartz	211	8.5
Superplasticizer	13	0.5
Steel Fibers	160	6.4
Water	136	5.5

Normal Concrete = ~41 MPa (6 ksi)

Modulus of Elasticity ~ 52 GPa (7,600 ksi)

Normal Concrete ~ 30 GPa (4,400 ksi)

Steel fibers 2% by volume

Steel Fiber = 0.2 x 12 mm Largest particle = 0.6 mm

UHPC Bridge Sections

AASHTO TYPE II

Π - SHAPE

NDE Roles for UHPC

- Condition Assessment
 - Detection of voids
 - Crack detection
 - Microcracking / corrosion damage
- Physical Properties
 - Magnetic properties
 - Elastic properties
- Quality Control
 - Modulus of elasticity, compressive strength

Crack Detection

Shear wave & Longitudinal wave

Pulse-echo mode

UT vs. Static Modulus

AUT System

AUT Testing to Date

- Approx. 150 hours of field testing
- More than 30 plates have been tested
 - Thickness ranging from 1 3.15 in., widths from 10 to 34 in.
 - About 1/3 have had thickness transitions
- Few inconsistencies with RT of UT have been observed to date
 - Analysis of results may be required to identity these differences

HERMES II Project

- A new PERES II cart system has been developed by LLNL and tested at the FHWA-NDE Center
- A contract for continued testing of the system has been awarded to the University of Vermont

PERES II System

Example PERES II Data

Deck Section with Simulated Defect: 1-inch Thick Styrofoam

Plan view at layer depth = 4 cm

Example PERES II Data

Deck Section with Actual Delamination

Plan view at layer depth = 8 cm

Example PERES II Data

Lake Anna Bridge Indicating Actual Delamination

Top Rebar Mat

Bottom Rebar Mat

Thermal NDE

•Bridge Deck Inspection using Thermogrpahy

•Thermal Stress Measurement

NDE Center IR System

Measurement Principle

Poplar St. Bridge

St. Louis, MO

- 2200 ft span length
- 8 lanes of traffic
- 5/8" thick steel orthotropic deck
- ½" thick low modulus epoxy concrete overlay

Typical Defects

Poplar St. Bridge, St. Louis, MO

IR Data Example Poplar St. Bridge, St. Louis, MO

Concrete Box Girder with Composite Retrofit

Concrete Box Girder with Composite Retrofit

Infrared Images

Long Wave

Short Wave

Areas marked found by tap test

Why Perform a Load Test

Structurally Deficient Bridges

NBI Statistics

≈580,000 bridges

≈ 100,000 structurally deficient

Structural Appraisal
27,707 bridges
(Theoretical Load
Rating)

Load Testing of Tams Slab Bridge (Tams, WV)

Side by Side Load Case

Typical Instrumentation

Back to Back Load Case

NDE Center

Federal Highway Administration

Comparison of Three Load Rating Methods (SU-45 Tridem Axle Truck)

	Tams Slab (Multi-Lane Loading)		Amigo Arch (Single Lane Loading)	
	Flexure	Shear	Flexure	Shear
Load Rating Method	OPR	OPR	OPR	OPR
AASHTO LRFR using minimum recommended properties	0.72	1.28	1.52	1.98
AASHTO LRFR using measured material properties	1.18	2.20	2.09	3.20
Finite Element Based Rating with measured material properties	2.36	1.42	2.5	3.06
NCHRP based load rating using diagnostic field test	3.69		2.74	

Load Testing Concrete Bridge

Carderock, Maryland

Traffic under bridge not altered

Conventional deflection transducers

Load Test Data

Bridge Data Acquisition System

Geosynthetic Reinforced Soil Bridge Defiance, OH

84 Sensor Channels: Strain, Soil Pressure, Displacement, Temperature

Thank You! Frank Jalinoos FHWA-NDE Center www.tfhrc.gov/hnr20/nde/home.htm